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ABSTRACT  

In a steel fabrication shop, jobs from different clients and projects are 

generally processed simultaneously in order to streamline production processes, 

improve resource utilization, and achieve cost-effectiveness in serving multiple 

concurrent steel-erection sites. Reliable quantity takeoff on each job and accurate 

estimation of shop fabrication man-hour requirements are crucial to plan and 

control fabrication operations and resource allocation on the shop floor. Building 

information modeling (BIM) is int ended to integrate multifaceted characteristics 

of a building facility, but finds its application in structural steel fabrication largely 

limited to design and drafting. This research focuses on extending BIMôs usage 

further to the planning and control pha ses in steel fabrication. Using data 

extracted from BIM -based models, a linear regression model is developed to 

provide the man-hour requirement estimate for a particular job. Actual data 

collected from a steel fabrication company was used to train and validate the 

model. Two Excel macro-enabled workbooks were also developed to provide 

decision-making support in fabrication planning.  
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Chapter 1.  I NTRODUCTION  

1.1 BACKGROUND  

Steel has long been the most important material  to the construction sector 

for its strength, durability, flexibility, efficiency, sustainability, and versatility 

(SteelConstruction.info 2014) . The production of steel pieces, which includes a 

variety of operations of detailing, fitting, welding, and surface processing, is a 

complex and critical process for a typical steel construction project. Most steel 

construction pro jects use off-site structural steel fabrication shops to support the 

erection sites in order to increase the productivity, gain better control over 

quality, and reduce the total cost of projects (Eastman and Sacks 2008). A steel 

fabrication shop usually makes use of shift work and serves multiple steel 

erection sites at the same time to keep the business economical. Efficient 

planning is substantial to steel fabrication to ensure a streamlined and delay-free 

production process. 

Figure 1-1 shows the structure of a typical construction project (Dozzi and 

AbouRizk 1993). Personnel, materials, equipment, and management are 

consumed by the system as resources to produce the construction units . As the 

foundation of further planning and scheduling, estimating plays a critical role  to 

every construction project. Quantity takeoff is the most time -consuming yet 

extremely important task in estimating. The following project scheduling and 

control would benefit a great deal if quantity takeoff could be done accurately and 

in a timely man ner. For example, it can be used to foresee and plan the 

construction activities during the pre -construction stage; in the process of 
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construction, quantity takeoff can be used as a measurement of the project 

progress or for financial performance  control o f the project (Monteiro and Poças 

Martins 2013) . 

 

Figure 1-1: Frame for productivity improvement (Dozzi and AbouRizk 

1993)  

 

The measurement unit for workload for steel fabrication projects can be 

the number of steel pieces, weight of the final product, project duration, or 

monetary value. With the nature of steel fabrication being labour-intensive, man-

hours are normally used as the major input for the steel fabrication processes 

(Dozzi and AbouRizk 1993). The other resources, such as labor, equipment, and 

overhead costs, are also closely correlated to man-hours. Therefore, it is most 

suitable to set the output of quantity takeoff as the man-hours needed to 

complete the project. In addition, the ratio of man -hours over the overall steel 

weight can be an excellent measure of production efficiency, i.e. productivity. 

As defined by National Building Information Model Standard Project 

Committee (2014), BIM is ña shared knowledge resource for information about a 

facility forming a reliable basis for decisions during its life -cycle.ò The concept of 
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BIM has been rapidly gaining popularity and acceptance since Autodesk released 

the BIM white paper (Autodesk 2003) . Ideally, the vitality o f a BIM-based model 

spans the entire life-cycle of a project, from earliest conception to completion, 

supporting processes like planning, design, cost control, construction 

management, etc. This relatively new technology has also been adopted by the 

steel fabrication industry, but only to find its use limited mostly to design and 

drafting (Sattineni and Bradford 2011). Most of the advantages that BIM offers, 

such as increased coordination of documents and effective information 

communication  and decision support for project management, are not exploited. 

BIM -based models are utilized solely as 3D visualization in most cases. The 

collaborating steel fabrication company for this research uses BIM software Tekla 

to build 3D models for structural visualization, and generate 2D drawings for the 

fabrication shop.  

1.2 PROBLEM STATEMENT  

A series of interviews with the estimators and project managers in the 

steel fabrication industry reveal that the current estimating practice followed by 

most steel fabricators is a manual process using spreadsheets and 2D drawings 

generated by computer aided design (CAD) software or exported from BIM-based 

models. Even with the availability of BIM, estimators use it as a visualization tool 

to help them with reading the 2D drawings. Estimators use their experiences to 

evaluate the project complexity and estimate the workload. The factor of human 

interpretation in the process determines the error -proneness of the process.  

The collaborating company is a leader in the steel fabrication and 

construction services industries, offering services of procurement, engineering, 

3D modeling, fabrication, coating, module assembly, erection, etc. Current 
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practice uses Tekla software (Tekla 2014a) to create 3D models from a customerôs 

drawings, and further produce erection and fabrication drawings.  

As shown in Figure 1-2, large projects are typically broken down in a 

hierarchical fashion from a project into one or more job s, from jobs into one or 

more divisions, which is of the proper size to manage and to be processed in 

different shops. Shops are identified  with different equipment and labor settings. 

For example, shop ñAò is equipped with a 40-ton overhead crane, making it 

suitable to handle super assembly structures; shop ñBò is set up to handle frames. 

A division is normally about 20 ï 50 tons, consisting of multiple pieces. It is the 

basic unit for the estimators and project managers to manage projects. The 

estimators or fabrication shop managers use their experiences to evaluate the 

division complexity and come up with a labour productivity value measured by 

man-hours per tonne, which is to be multiplied by the overall weight of steel in 

order to get the man-hours budget needed to complete the work. 

 

 

Figure 1-2: Hierarchy of a steel fabrication project  
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The effectiveness of this practice depends to a great extent on personal 

experience and knowledge, and may not always be consistent and reliable. The 

abundant information contained in BIM, such as design details and predefined or 

user-defined material properties, is not exploited properly.  

Furthermore, job compositions of steel fabrication projects can vary 

greatly from one to another. Even within the same job or division, the labour 

requirements per unit weight of different material types are generally different. 

For example, a piece demanding extensive welding obviously requires more man-

hours than a super-assembly connected by bolts. 

1.3 RESEARCH OBJECTIVES  

The objectives of the research presented in this thesis include: 

¶ Investigating the common application s of BIM in structural steel 

fabrication;  

¶ Understanding the current  estimating  practices in steel fabrication 

shops; 

¶ Exploring the possibility of extending BIMôs usage further to the 

fabrication planning and control phase; 

¶ Providing  decision support as to bid or not to bid  after evaluating 

the current and future workload;  

¶ Comparing three different modeling methods (linear r egression, 

SVM regression, and RBF neural network) to model steel 

fabrication workload in terms of man -hours; 

¶ Providing a quantitative  approach to the prediction of fabrication 

man-hour requirements for structural steel projects by analyzing 

and learning from the historical schedules and cost information 
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stored in the companyôs central database for the benefits of 

detailed estimating.   

1.4  M ETHODOLOG IES  

This study makes use of the material parts report generated from Tekla. 

The essential attributes at the level of materials, as well as the summary level of 

divisions, are collected and analyzed for 298 jobs and 1605 divisions completed 

by the collaborating steel fabricator from 2009 to 2013. Only jobs that include 

ñsupply workò are considered because erection is a process almost completely 

separate from shop fabrication. 

The first stage of this research is to design a meaningful data structure to 

sort out and organize the data at different levels, and to collect necessary 

information from the large database.  

After historical data are collected, a regression model is developed. The 

basic attributes of different material types are defined as independent input 

variables. The man-hours needed to fabricate a division are defined as the output 

variable. An open-source software, WEKA (Hall et al. 2009) , is chosen to 

complete the data mining task because of its wide collection of machine learning 

algorithms and various regression functions. The selection of contributing factors 

and the optimization of the variables through iterative experiments are all 

facilitated  by using WEKA. Different modeling me thods are tested and compared 

to find a suitable model for  the workload of steel fabrication in terms of man -

hours. 

At the third stage, the developed model is verified through an 

independent dataset and the prediction results are compared with the forecast 

made by personal judgment. 
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1.5 THESIS ORGANIZATION  

The thesis starts with an introductory chapter that presents an overview of 

the entire thesis, including the background, problem statement, research 

objectives, and methodologies used.  

Chapter 2 provides a thorough review of previous studies related to 

construction estimating, data mining, application of regression analysis in the 

construction field, and implementation of data mining algorithms.  

Chapter 3 explains the raw data structure in detail and describes how the 

data were prepared for modeling.  

Chapter 4 presents the modeling process. A real case study from the 

collaborating steel fabrication company is conducted as an example to illustrate 

the validity, suitability and usefulness of the proposed method. 

Chapter 5 demonstrates two automatic spreadsheet tools that can spread 

the workload in the shop on a weekly basis in order to facilitate shop operation 

planning.  

Chapter 6 concludes the thesis with a summary of what has been achieved, 

and outlines a proposal for future enhancements. 
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Chapter 2.  BACKGROUND &  L ITERATURE REVIEW  

2.1 QUANTITY TAKEOFF  

Traditionally, a  material takeoff (MTO) refers to the result or the process 

of generating a list of required materials with quantities and other specifications 

to accomplish a design by analyzing the drawings, blueprints, or other design 

documents (Whitt 2012) . Takeoff is followed by the estimating process, which is 

to apply costs to the quantity measurements. Sometimes the terms quantity 

takeoff and estimating  may be used interchangeably if the desired results use the 

same unit of measurements. As shown in the classic cost influence curve (Figure 

2-1), the ability to influence the project outcome is the greatest and the cost is the 

lowest when the project is in the early stages. If quantity takeoff and estimating 

could be done accurately early in the project, the following project scheduling and 

control would benefit a great deal. 

 

 

Figure 2-1: Cost influence curve  for project lifecycle  (CII 1995)  
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To perform quantity takeoff, several methods are available in the 

construction industry. Traditional estimators do their takeoffs manually with 

printed drawings. They would use colorful markers to keep track of different 

materials and enter relevant information onto leger sheets or spreadsheets for 

calculation.  Figure 2-2 is a takeoff form template used by a company being 

investigated during the  present research. The quantity, unit weight, section detail, 

etc. need be filled in manually for each line item.  Some estimators adopt simple 

annotation software to view electronic drawings  and perform  color -coding, etc., 

but the process is still manual in essence (Vertigraph Inc. 2004) . Special 

estimating software is another approach, but its input still relies hea vily on 

human interpretation.  

 

 

Figure 2-2: An example of takeoff form  

 

As stated by Tiwari et al. (2009), ñModel-based cost estimating is the 

process of integrating the object attributes from the 3D model of the designer 

with the cost inform ation from the database of the estimator.ò Adopting BIM for 
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managing the design and construction process of projects has proven to be a 

shared understanding (Aranda-Mena et al. 2009). BIM -based estimating would 

assure the reduction of errors resulting from the repetitive manual entry of data, 

allow high accuracy and standardisation in estimate production, which improves 

estimatorsô productivity. As commented by Monteiro and Poças Martins (2013), 

BIM -based quantity takeoff is ñone of the potentially most important and 

profitable applications for BIM. ò Yet, it is still generally underdeveloped and 

underutilized . 

2.2  STRUCTURAL STEEL FABRICATION  

Steel is a widely used building material throughout the construction 

industry  because of its ability to suit different requirements of strength, 

weldability, corros ion resistance, etc. (Williams 2011). It works like a skeleton to 

hold the building structure up and together.  When compared to other structural 

building materials ste el has a great many advantages. Unlike wood, steel does not 

bend, twist, expand, or contract substantially because of the weather and 

temperature. Unlike concrete, steel does not have a curing process and is at full 

strength as soon as it is completed. Steel has more strength with less weight and 

durability.  Steel structures require little maintenance, do not age or decay as fast 

as the other construction materials, and last longer (SteelConstruction.info 2014) . 

Steel construction is cost-efficient and can take place in most weather conditions. 

Furthermore,  steel is 100% recyclable and can be multi-cycled without losing 

quality , making it  one of the most environmentally friendly building  materials. 

There are generally a few stages in a typical steel construction project: design, 

procurement, steel fabrication, shipment , optional module assembly, and on-site 

erection, among which steel fabrication is a very critical part (Azimi et al. 2011). 
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Fabrication  is defined by Berman (2014) as ñthe act of changing steel from 

the mill  or warehouse into the exact configuration needed for assembly into a 

shipping piece or directly into a structural frame.ò It mostly takes place in an 

offsite fabrication shop that is highly regulated, controlled,  confined, safe, and 

equipped with leading edge specialized fabrication systems. All structural steel 

components, such as columns, beams, channels, and plates, can be carefully 

designed and precisely fabricated before delivery to site to be assembled and 

erected.  

The systematic fabrication process generally consists of a series of 

operations including cutting, grinding, drilling, burning, fitting, welding, and 

surface processing (painting, sand blasting, fireproofing etc.) . The whole shop 

floor is divided into several main areas according to the specific functions, and 

each shop (for instance, cutting shop, fitting shop, welding shop, and painting 

shop) is equipped with specialized machines, tools, and skilled personnel. The 

inputs of a steel fabrication shop are raw steel materials and shop fabrication 

drawings, and the outputs are fabricated steel components that are ready to be 

assembled and shipped to site for erection (Figure 2-3). 
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Figure 2-3: Steel fabrication processes  

 

A Shop Operations Manager is responsible for spreading and scheduling 

jobs throughout the multiple shops on the shop floor, in collaboration with the 

respective Project Manager. In order to maintain a balanced workload, high 
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production rate, and streamline d operations, the manager needs to define the 

scope of a job well in terms of man-hours, which is what this study focuses on. 

2.3  BUILDING I NFORMATION M ODELING (BIM)  

According to the National Building Information Model Stan dard Project 

Committee (2014), 

 

Building Information Modeling (BIM) is a digital representation of 

physical and functional characteristics of a facility. A BIM is a  shared 

knowledge resource for information about a facility forming a reliable 

basis for decisions during its life -cycle; defined as existing from earliest 

conception to demolition . 

A basic premise of BIM is collaboration by different stakeholders at 

different phases of the life cycle of a facility to insert, extract, update or 

modify informat ion in the BIM to support and reflect the roles of that 

stakeholder. 

The US National BIM Standard will promote the business requirements 

that BIM and BIM interchanges are based on:  

¶ a shared digital representation,  

¶ that the information contained in the mode l be interoperable (i.e.: 

allow computer to computer exchanges), and  

¶ the exchange be based on open standards, 

¶ the requirements for exchange must be capable of defining in 

contract language.  
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The concept of BIM has been rapidly gaining popularity and acceptance 

since Autodesk released the BIM white paper (Autodesk 2003) . Ideally, the 

vitality of a BIM -based model spans the entire life-cycle of a project, from earliest 

conception to completion, supporting processes like planning, design, cost 

control, construction management etc.  BIM soluti ons can be customised and 

applied to vari ous areas, for instance, concrete construction, steel fabrication, 

steel erection, rebar fabrication, and structural design. Figure 2-4 (Tekla 2014b) 

shows the workflow and the integration of all the services in steel fabrication 

industry.  Ideally, the bidding, preconstruction, construction, and post 

construction  of a project can all be managed through BIM as a whole instead of 

jumping across multiple software and systems, avoiding having to deal with 

abundant document format transformation s. I t is a platform to share knowledge 

among different project stakeholders, providing consistent and coordinated 

representations of the digital model.  

 

Figure 2-4: BIM workflow (Tekla 2014b)  
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Figure 2-5 (Tekla 2014b) shows a portion of a BIM-based model, along 

with a view of the component coding system the model uses. It represents a steel 

structure that consists of beams, columns, handrails, and is connected with bolts. 

 

Figure 2-5: A BIM example of steel structures (Tekla 2014b)  

 

To seize the full potential value of BIM, contractors cannot limit their  

exploration of BIM to 3D modeling and vi sualization only.  3D rendering is the 

basic use of BIM. BIM can also be used to detect clashes and conflicts. Detailed 

fabrication drawings can be generated for different trades. Change orders and 

addendums can easily be communicated between different parties. 3D models 

combined with other planning techniques and tools can provide  powerful 

construction monitoring, which in turn helps with scheduling and updating 3D 

models (Hergunsel 2011). 

The Industry Foundation Classes (IFC) data model is ña platform neutral, 

open file format specificationò intended to provide a set of consistent data 

representations of building and construction industry information  (Eastman 
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2006) . It is developed by buildingSMART to facilitate interoperability in the 

Architecture, Engineering , and Construction (AEC) industry . Add-ons and 

extensions can be developed using IFC format to facilitate the communication 

between different BIM -related systems. 

Significant  research has been carried out  in exploration of BIM.  The study 

conducted by Howard and Björk (2008)  is an overview of expertsô views on BIM. 

It collects some pilot use cases and BIM user experience from a number of 

leading property owners in spite of the complexity of the formal standards such 

as the IFCs. Aranda-Mena et al. (2009)  provided insights into BIM and 

illustrated its importance and potential applications in construction project 

management industry through case studies. Steel, Drogemuller, and Toth (2012) 

presented their experience with model -based interoperability issues, successes, 

and challenges in BIM exchange between various tools; a business case 

framework to facilitate the adoption of BIM was proposed. Jung and Joo (2011) 

developed a comprehensive BIM framework consisting of three dimensions and 

six categories, which provides a basis for the evaluation of practical BIM 

effectiveness. Nawari (2012) reviewed the importance of BIM standard s in off -

site construction and its role in data exchange. An Information Delivery Manual 

(IDM) wa s also proposed, which provides material description of building 

construction processes, information requirements, and expected process outputs 

in the study. Furthermore, BIM can provide support to teaching construction 

project management (Peterson et al. 2011). The introduction of BIM -based 

project management tools helped educators design more realistic project-based 

assignments and cases, and supported students with learning the integration and 

application of different project management functions . 
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Ikerd (2008)  justified the importance of BIM in structural engineering.  

Shi (2009)  proposed a framework of integrating Radio Frequency Identification 

(RFID) with BIM technologies for th e decision-making processes in structural 

steel fabrication and erection. A portable RFID database scheme was developed 

to increase the efficiency and accuracy in steel fabrication and erection. Xie, Shi, 

and Issa (2010) further discussed the BIM/RFID implementation in computer-

aided design, manufacturing, engineering, and installation processes. Tiwari et al. 

(2009)  applied BIM tools for Target Value Design (TVD) on a large healthcare 

project in Northern C alifornia. A 4D simulation for a steel arch bridge was 

produced to illustrate the use of BIM tools in a design review and lifting plan 

study (Chiu et al. 2011). Lancaster and Tobin (2013) outlined their firmsô 

extensive experience with BIM, providing strategies and new understandings of 

applying BIM to structural engineering projects aimed to accommodate 

Integrated Project Delivery (IPD). Kalavagunta (2012) presented an integrated 

structural modeling workflow for structural design. Sattineni and Bradford (2011) 

conducted a survey of construction practitioners in United  States to determine 

the usage of BIM in various tasks, especially in construction cost estimating. 

Monteiro and Poças Martins (2013) also explored automatic BIM based quantity 

takeoff and a case study was presented. As one of its conclusions, the authors 

suggested that takeoff specifications such as manual measurements should be 

revised to account for BIM features in order to minimize the limitations  in 

current practice .  

2.4  M ACHINE L EARNING  

People have been looking for information in the sea of data ever since 

human beings became intelligent, and the identification of  potenti ally useful 
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information or patterns hidden in the huge amount of data around us is what 

experience, knowledge, and intelligence are actually about. Machine learning, as 

a branch of artificial intelligence (AI), is about the study and construction of 

systems, other than human brains, that can solve problems by analyzing and 

learning from data. In 1959, Arthur Samuel defined machine learning as ña field 

of study that gives computers the ability to learn with out being explicitly 

programmedò (Simon 2013). It provides tools to make predictions automatically 

or help people make decisions about complex and scaled problems from data in a 

faster and more accurate way. A more formal and widely quoted definition of 

machine learning is provided by Mitchell (1997): 

 

A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E. 

 

This fundamentally operational definition makes it clear that the class of 

tasks, the source of experience, and the measure of performance to be improved 

are the three features that have to be identified in order to have a well-defined 

learning problem (Mitchell 1997) . 

The term machine learning  is commonly confused with data mining . 

These two areas overlap significantly in the methods they employ, focusing on 

slightly different goals. As mentioned before, machine learning relates to the 

study and development of learning algorithm s and focuses on prediction in most 

cases. Data mining, on the other hand, can be defined as the process of trying to 

extract previously unknown knowledge, properties, or patterns from 

unstructured data. It focuses on the discovery aspect. Data mining may utilize 
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machine learning algorithms during the process, and may also drive the 

advancement of machine learning techniques (Cross Validated 2013; 

ResearchGate 2013). 

2.4.1  Machine Learning Algorithms  

A popular taxonomy of organizing machine learning algorithms is based 

on the learning styles algorithms can adopt  (Brownlee 2013a): 

¶ Supervised Learning: Algorithms are trained on input data that 

have a known label or desired result, such as sunny/rainy or 

spam/not -spam. Such an algorithm attempts to create a model to 

make predictions of the outputs according to the inputs. The 

model is like a function or mapping from the inputs to outputs. 

Once a desired level of accuracy is achieved (i.e. the predictions 

and the labels are close enough), the trained model is able to 

generate outputs for inputs that have not been used in the training 

process. Classification and regression problems fall into this 

category. Example algorithms are Decision Trees, Stepwise 

Regression and Back-Propagation Neural Networks.  

¶ Unsupervised Learning: Training examples are not labelled and do 

not have a known result. Instead of generalising a function or 

mapping from inputs to outputs, a model is prepared by 

discovering structures present in the input data. Example 

algorithms are K-Means Clustering and Apriori Algorithm.  

¶ Semi-Supervised Learning: Input data consist of both labelled and 

unlabelled examples. The desired model needs to be able to make 

predictions as well as deducing the structures in the data. An 
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example problem would be image classification where only few 

examples are labelled in a large dataset. 

¶ Reinforcement Learning:  Input data are provided as stimulus. A 

model attempts to gather knowledge in an environment through 

punishment or reward feedbacks about its actions. The goal is to 

maximize some cumulative reward. Example algorithms are Q-

Learning and Temporal Difference Learning.  This type of learning 

is more likely to be used in certain kinds of control system 

development. 

Another grouping method is by algorithm similarity. For example, 

regression methods, decision tree methods, instance-based methods, associate 

rule learning, cluster ing methods, and artificial neural networks. In the following 

section, only the basic linear regression algorithm is introduced as it is the 

method used in this research. 

2.4.2  Linear Regression  

Linear regression is actually a fundamental method in statistics , suitable 

for situations where most or all the attributes are numeric . The basic idea is to 

express the model as a linear mapping from the attributes to the output class. The 

goal is to come up with ña function that approximates the training points well by 

minimizing the prediction errorò (Witten, Frank, and Hall 2011) . A model is 

represented as: 

ὼ ύ ύὥ ύὥ Ễ ύὥ (2-1) 

where ὼ is the outcome or class; ὥȟὥȟȣȟὥ  are the numeric  attribute 

values; and ύȟύȟύȟȣȟύ  are weights for each attribute . 
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The weights are calculated from the training data. Each trainin g instance 

has its own set of attribute values ὥ ȟὥ ȟȣȟὥ  and the outcome ὼ . 

Assuming an extra attribute ὥ with a constant value of 1, then the predicted 

value for the class can be conveniently written as: 

ύὥ ύὥ ύὥ Ễ ύὥ В ύὥ  (2-2) 

The method of linear regression is to look for a set of numeric weights 

ύȟύȟύȟȣȟύ  to make the predicted values as close to the actual values as 

possible; in other words, to minimize the sum of the squares of the differences 

over all the training instances (Witten, Frank, and Hall 20 11). In order to choose 

coefficients properly, the function shown in (2-3) is the target to be minimized. 

This is the classic least-squares linear regression method. 

В ὼ В ύὥ  (2-3) 

Once a set of numeric weights has been calculated based on the training 

data, the prediction of the outcome of new instances can be accomplished using 

the formula.  

Aside from the complete numeric cases, linear regression is able to handle 

nominal attributes as well.  In contrast to the continuous nature of  numeric 

attributes  that measure real or integer numbers, nominal attributes handle a pre -

defined set of values and are sometimes called categorical attributes. The finite 

set of values serve only as names or symbols (Witten, Frank, and Hall 2011) . The 

trick  of applying linear regression to nominal attributes  is to view each possible 

value of the nominal attribute s as a binary attribute, whose value is either 0 or 1. 

There are more advanced variations of the standard linear regression, such as 

logistic regression and multivariate linear regression, which is not covered in this 

research. 
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2.4.3  SVM Regression  

Support Vector Machines (SVMs) are supervised learning models with 

associated learning algorithms, belonging to a family of generalized linear 

classifiers. The current standard ñsoft marginò method was proposed by Cortes 

and Vapnik (1995) on the basis of the original algorithm invented by Vladimir N. 

Vapnik in 1979. SVM can be applied not only to classification problems but also 

to regression analysis for its ability of analyzing data and recognizing patterns. 

The basic idea of SVM is to find a hyperplane that divides data points into two 

classes with the largest separation or margin, which is defined by the distance 

from the hyperplane to the nearest data point of each class. As shown in Figure 

2-6, only Ὄ  separates the classes with the maximum margin. 

 

 

Figure 2-6: One -dimensional hyperplanes  
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The traditional support vector machine can only utilize complex and 

expensive quadratic programming (QP) solvers in optimization, until the 

introduction of Sequential Minimal Optimization (SMO) method, which greatly 

simplifies the optimization into two ana lytically solvable problems (Flake and 

Lawrence 2002). 

SVM regression is a version of SVM proposed in 1996, which can also be 

called Support Vector Regression (SVR). The cost function for building the model 

ignores any training points that lie beyond the threshold. Therefore the model 

produced by SVR actually depends only on a subset of the training data. The 

basics of SVR is illustrated below (Smola and Schölkopf 2004; Cortes and Vapnik 

1995; Cross Validated 2011; ñSupport Vector Machine Regressionò 2014). 

Suppose a training dataset consisting of ὲ points is given as:  

ὼȟώ ȟὼȟώ ȟȣȟὼȟώ Ṓᴙ ᴙ , 

where ᴙ is the set of real numbers. 

The ὼ is a Ὠ-dimensional real vector. The target is to find a function Ὢὼ 

such that the deviation from the actual target ώ for all the training data is within 

the threshold ‐. At the same time, the flatness of the function needs to be 

maximized to minimize t he sensitivity to errors in the data points.  

The linear regression function Ὢὼ is in the form:  

Ὢὼ ẗὼ ὦȟᶰᴙȟὦɴ ᴙ (2-4) 

The ẗ denotes the dot product and .the normal vector to the hyperplane  

In ‐-SV regression (Cortes and Vapnik 1995) where ‐ is a threshold, Ὢ needs to 

satisfy (for any Ὥ ρȟȣȟὲ): 

ȿώ Ὢὼȿ ‐ (2-5) 
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And maximization of the flatness of the function in (2 -4) can be achieved 

by minimizing the norm of i.e. ᴁᴁ. Consequently the objective is to solve the , 

following optimization problem  (Smola and Schölkopf 2004): 

minimize   ᴁᴁ 

subject to  

ώ ẗὼ ὦ ‐

ẗὼ ὦ ώ ‐
  (2-6) 

However, a function Ὢ that satisfies all pairs ὼȟώ  with ‐ precision may 

not actually exist. Moreover some errors also need to be allowed for. Accordingly 

the infeasible constraints of the optimization problem (2 -6) are loosened by 

intro ducing non-negative slack variables ‚ȟ‚  that are used in the ñsoft marginò 

cost function in SVM. Hence the optimization problem is transformed to  (Smola 

and Schölkopf 2004) : 

minimize  ᴁᴁ ὅВ ‚ ‚ , (ὅ is a positive constant) 

subject to  

ώ ẗὼ ὦ ‐ ‚

ẗὼ ὦ ώ ‐ ‚

‚ȟ‚ π

 (2-7) 

The solution to the problem above is to construct a Lagrange function 

from the objective function as  (Smola and Schölkopf 2004): 

ὒḯ
ρ

ς
ᴁᴁ ὅ ‚ ‚ ‚ ‚ ‐ ‚ ώ ẗὼ ὦ 

В ‐ ‚ ώ ẗὼ ὦ (2-8) 

ὒ is the Lagrangian and ȟȟȟ are Lagrange multipliers. Having 

derived the Lagrange function, the Support Vector expansion is conducted as 

(Smola and Schölkopf 2004): 

 В   ὼ (2-9)

Hence: 
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Ὢὼ В   ὼẗὼ ὦ (2-10) 

According to (2-9), can be completely calculated by the linear  

combination of the training data points ὼ. 

The constant offset ὦ can be computed via various methods such as 

exploiting the Karush -Kuhn-Tucker (KKT) conditions and as a by-product of the 

optimization process (Smola and Schölkopf 2004). 

2.4.4  RBF  Neural Network  

A radial basis function (RBF) neural network is an artificial neural 

network widely used for functional approximation and prediction in areas suc h as 

time-series modeling, system control and pattern classification. The name comes 

from its use of radial basis functions as activation functions  (Broomhead and 

Lowe 1988). 

In a RBF network  there are basically three layers with different roles  as 

shown in Figure 2-7: an input layer, a hidden layer and an output layer. The first 

layer is simply a fan-out layer, acting as a connection between the network and 

the environment.  No processing is done. The second layer, i.e. the hidden layer, 

transforms the nonlinear input space to the hidden space, which in most cases is 

higher dimensional . The last one, output layer, applies a linear transformation  

(Haykin 1999) . The rationale is justified by Coverôs theorem on the separability of 

patterns (Cover 1965). By using a nonlinear mapping to transform  the input 

space in a higher dimensional space, the complex patterns can be more linearly 

separable. The nonlinear mapping is then followed by a linear mapping from the 

hidden space to the output space. 
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Figure 2-7: Architecture of RBF network (Hay kin 1999)  

 

Define a set of input vectors (or patterns) ὢ ●ȟ●ȟȣȟ● , in ד  space. 

Each of these vectors are assigned to one of two classes ὢ and ὢ. Define a set of 

hidden functions • ●ȡ ד ᴼדȿὭ ρȟςȟȣȟὴ. For each vector  , define a vector 

•● • ●ȟ• ●ȟȣȟ• ● . Then the vector •●  maps patterns of 

dimension ά into corresponding points in a  ὴ-dimentional space, which is 

referred to as the hidden space. If there exists a ὴ-dimentional vector ◌ such that 

(Cover 1965): 

ύ •● πȟ●ɴ ὢ

ύ •● πȟ●ᶰὢ 
 (2-11) 

Then ὢ is •-separable, and the separating surface in the hidden space is 

defined by the equation (Cover 1965): 

ύ •● π (2-12) 

The inverse image of this hyperplane is the separating surface in the input 

space. 
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Given data pairs ●ȟὨ ȟ●ȟὨ ȟȣ ●╝ȟὨ ᶰד  the interpolation ,ד

problem is to find a function Ὂȡ ד ᴼד that satisfies the interpolation condition:  

Ὂ● ὨȟὭ ρȟςȟȣȟὔ (2-13) 

The RBF technique is to choose a function Ὂ in the form  (Haykin 1999) : 

Ὂ● В ύ•ᴁ● ●░ᴁ (2-14) 

where ύ ᶰד are weight factors.ᴁϽᴁ denotes a norm between ● and ●░, 

which is usually Euclidean distance. •ᴁ● ●░ᴁȿὭ ρȟςȟȣȟὔ  is a set of radial 

basis functions, the value of which depends solely on the distance from the data 

point to the origin. Gaussian function is one of the popular choice and is in the 

following form:  

•ὶ Ὡ  (2-15) 

where „ defines the width of the bell-shape. 

When choosing the center nodes of the RBF network in the hidden layer, 

aside from using K-means clustering, the centers can also be randomly sampled 

from the dataset. This step is unsupervised. If the RBF network is used for 

pattern classification, a hard -limiter or sigmoid function could be placed o n the 

output neurons to generate categorical values. 

2.4.5  Evaluation of Machine Learning Algorithms  

Having defined the problem and prepared the data, machine learning 

algorithms will be applied to the data  to solve the problem. Multiple tests are 

needed to run and tune the algorithms in order to discover whether there is a 

pattern or structure in the problem for the algorithm to learn, and decide which 

algorithms are effective for  the problem. 
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The step before applying any algorithm is to prepare a training dataset 

and a test dataset out of the transformed dataset. The two datasets need to be 

representative of the problem. Generally the intersection of the two sets is empty, 

meaning that the training dataset and the test dataset are independent of one 

another. An algorithm wil l be trained on the training dataset and evaluated 

against the test dataset. 

Other than using separate training and test datasets, another approach is 

to use the whole transformed dataset to train and test an algorithm, which is 

called cross validation. The first step of N-fold cross validation method is to 

separate the dataset into N groups of instances of the equal size M . Each group is 

called a fold. The model is trained on N-1 folds and then tested on the one fold 

that was left out. The process is repeated so that each of the N fold is left out and 

act as a test dataset. In the end, the average of the performance measures of the N 

folds is used to evaluate the performance of the algorithm on the problem. This 

method resolves the balance issue between the size and representation of training 

and test datasets. It is often used when the transformed dataset is not large 

enough to be split into a training and a test datasets of suitable size. 

2.4.6  Performance Measure  

The performance measure is the measurement of the performance or 

quality  of solutions to a problem. It is the way to evaluate the success of different 

machine learning experiments. For numeric al prediction, a few measures to 

interpret the performance of the predictions made by a trained model on the test 

dataset are listed in Table 2-1. Assume the actual values of the test instances are 

ὥȟὥȟȣȟὥ ; the predicted values calculated by the model are ὴȟὴȟȣȟὴ; ὲ is the 

total number of test instances; ὥ is the average value from  the training dataset;  ὥ 
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is the mean value over the test dataset; ὴ is the mean value of the predictions for 

the test data. 

 

Table 2-1: Performance measures for numeric al  prediction (Witten, 

Frank, and Hall 2011)  

Performance Measure  Expression  

Correlation coefficient  
В ὴ ὴ ὥ ὥ

В ὴ ὴ В ὥ ὥ
 

Mean absolute error 
ȿὴ ὥȿ Ễ ȿὴ ὥȿ

ὲ
 

Mean squared error 
ὴ ὥ Ễ ὴ ὥ

ὲ
 

Root mean squared error 
ὴ ὥ Ễ ὴ ὥ

ὲ
 

Relative squared error 
ὴ ὥ Ễ ὴ ὥ

ὥ ὥ Ễ ὥ ὥ
 

Root relative squared error 
ὴ ὥ Ễ ὴ ὥ

ὥ ὥ Ễ ὥ ὥ
 

Relative absolute error 
ȿὴ ὥȿ Ễ ȿὴ ὥȿ

ȿὥ ὥȿ Ễ ȿὥ ὥȿ
 

 

 

The first measure, correlation coefficient, is scale-independent and 

measures the statistical correlation between the actual ὥȟὥȟȣȟὥ  and the 

predicted ὴȟὴȟȣȟὴ. The larger the value, the better the performance. It ranges 

from 1 to -1. The value of 0 indicates that there is no correlation at all. Negative 

values indicate that the results are negatively correlated. For the other error 

measures, small values are the indications of good performance.  
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The appropriate  choice of performance measures requires considerations 

of the specific problem and application.  For example, the squared error measures 

and root squared error measures tend to amplify the large discrepancies of 

prediction errors, whereas the absolute error measures do not have this effect. 

Fortunately, all the performance measures are easy to calculate. In most 

situations, the measured results of a numerical prediction method is consistent 

no matter which mathematical performance measure is used. 

2.4.7  Application s in Construction  

Artificial intelligence has long been adopted by researchers for modeling 

and solving problems in the construction industry. Modeling techniques such as 

artificial neural network (ANN), regression models, and decision trees have been 

introduced to study the relationships between all kinds of factors in construction 

processes using historical data. 

Song and AbouRizk (2008)  used ANN to model the relationship of 

influencing factors and steel drafting and fabrication productivities.  They 

proposed a systematic approach to make use of historical data, and applied the 

methodology to measuring and modeling steel drafting and fabri cation tasks. 

Portas (1996) developed a back-propagation, feed-forward  neural network system 

to provide support in the labor productivity estimation fo r concrete formwork.  

The inputs to the system are contributing factors to labour productivity, and the 

output is a set of binary  scores representing certainty of occurrence in 

correspondence with the subset ranges of productivity values that can be used to 

predict performance of the labour productivity of future projects . ANN has also 

been used to model the relationship between influencing factors and construction 

productivity in trades like earthmoving equipment productivity (Karshenas and 
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Feng 1992), concrete construction productivity (Sonmez and Rowings 1998), and 

productivity of spool fabrication  in the shop and pipe installation  in the field  (Lu 

2001). These researches all proved the effectiveness of ANN in addressing the 

complexity in construction productivity modeling.  At the preparation step, 

various methods of data collection and productivity measurement were also 

explored in different trades. Furthermore, instead of utilizing an existing ANN 

scheme, Lu (2001) developed a new ANN scheme, combining classification and 

prediction on the basis of Kohonenôs LVQ concept and with a probabilistic 

method integrated,  to suit the requirements in the problem domain . It is named 

the Probability Inference Neural Network (PINN). The new model was applied to 

predict labour production rates and was proven effective in solving high 

dimensional mapping of input and output with multiple influential factors.  

Hu and Mohamed (2012) explored two different techniques,  artificial 

intelligence planning and dynamic programming , to solve the automation 

problem in sequencing decision making in construction . More specifically, they 

applied Planning Domain Description Language (PDDL), which is a domain -

independent artificial intelligence planning language . 

Fayek and Oduba (2005)  used fuzzy logic expert systems to predict 

productivity of pipe rigging and welding.  Contributing factors that affect the 

productivity of each activity were identified. Fuzzy membership functions and 

expert rules were developed. Actual data collected from a construction project 

were used to validate the models, which were proved to have high accuracy of 

linguistic prediction . 

Smith (1999) applied multiple  regression-based models to study 

earthmoving productivity  with focus on investigation of the relationships between 

earthmoving operating conditions and productivity and bunching. The models 
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developed suggested a strong linear relationship between the operating 

conditions and productivity . Lee et al. (2013) used regression analysis to develop 

a quantity prediction model for reinforced concrete and bricks in education 

facilities  that were built as a result of the Build -Transfer-Lease (BTL) projects 

actively promot ed by the Korean government. Linear regression is also used to 

develop condition prediction models of oil and gas pipelines in order to provide 

decision support to practitioners in planning for pipeline maintenance (El-

Abbasy et al. 2014). Linear regression was explored to suit the numerical output 

type of the proposed pipeline condition assessment models. The influential 

factors that have a major impact on pipeline conditions were selected by 

presenting a questionnaire to experts and reviewing literature. Five condition 

prediction models were developed and a sensitivity analysis was conducted to 

learn about the impact degree of each factor on the model output individually.  

2.5  WEKA  

WEKA is an open source data mining software written in Java developed 

by the machine learning group at the University of Waikato , New Zealand. It is a 

modern platform and workbench for applied machine learning. The name WEKA 

is an acronym which stands for Waikato Environment for Knowledge Analysis.  

Incorporated into WEKA is  a comprehensive collection of machine learning 

techniques and algorithms that can be applied directly to a dataset. Also included 

are tools for data pre-processing, classification, regression, clustering, association 

rules, evaluation methods, and functions that are suited for the development of 

new machine learning schemes (The University of Waikato 2014) . It provides an 

environment to support and facilitate a range of machine learning activities. 

Furthermore, with the  graphical user interfaces especially the data visualization 
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feature, a user can easily explore and apply machine learning algorithms and 

analyze and interpret  the results. Figure 2-8 shows its graphical user interface 

(GUI). The latest stable version is 3.6.11, and that is the version utilised in this 

research. 

 

 

Figure 2-8 : WEKA GUI chooser  

 

As shown in the figure above, WEKA consists of the following four major 

applications:  

¶ Explorer: This application is an environment for exploring data 

with the various transformation schemes, algorithms, etc. Its 

interface is divided int o 5 different tabs, preprocess, classify, 

cluster, associate, select attributes, and visualize. 

¶ Experimenter : This environment is for designing controlled 

experiments with algorithm selections and datasets, conducting 

statistical tests, and analyzing and comparing results between 

different schemes over multiple runs.  
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¶ Knowledge Flow: This interface allows a user to design the 

iterative machine learning process graphically and run 

experiments for complex problems. Loading and preprocessing of 

data, application of algorithms can all be planned via simple drag-

and-drop. It  provides support of incremental learning . 

¶ Simple CLI: This is a simple command-line interface (CLI) that 

provides access to all WEKA classes, allowing direct execution of 

commands for all WEKA features. 
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Chapter 3.  DATA PREPARATION  

In order to get solutions to a problem via machine learning, it is critical to 

feed the algorithms the right data, meaning that significant  features need to be 

included, and that the data are in a useful format and scale (Brownlee 2013b). To 

prepare data for a machine learning algorithm, they need to be selected, 

preprocessed, and transformed. 

3.1 DATA SOURCE  

BIM software has the functionality to create all kinds of reports of the 

information included in the models. Tekla Structures, used by the collaborating 

company, creates reports in the format of ñ*.xsrò files. The reports include lists of 

drawings, bolts, parts, etc. (Tekla 2014a). Since the reports come directly from 

the model, the information i s always accurate and reliable. 

A customized report template (*.rpt) is used in Tekla to create reports 

containing necessary information from the BIM models.  Figure 3-1 and Figure 

3-2 demonstrate an example of a material parts report generated from Tekla, the 

original model of which is shown in Figure 3-3. In the report, essential material 

attributes, such as part number, description, quantity, length, unit weight, and 

drawing number, are listed.  

Besides the BIM-based models and reports, the collaborating companyôs 

information management system (IMS) also includes  an internal central database. 

There are over 400 tables in the SQL Server database maintaining data for shop 

fabrication, as well as drafting, accounting, quality control, shipping, e tc. The 
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data of detailed materials need to be processed in combination with the 

production data in  the database to be meaningful in achieving the modeling goal. 

 

 

Figure 3-1: An example of Tekla report (part -1) 
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Figure 3-2: An example of  Tekla r eport (part -2)  

 

 

Figure 3-3: An example of Tekla model  
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3.2  DATA SELECTION  

The targeted IMS contains data dating back over ten years. The 

productivity that can be achieved in the shop and the amount of resource 

required for fabricating the same amount of structural steel have both changed, 

compared with those ten years ago, on account of the technological evolution in 

fabricat ion methods and equipment, the growth of economy, as well as the 

development of company strategies. Therefore the input of the learning process 

must be recent enough to produce meaningful results that could benefit current 

practices. Furthermore,  the dataset should be big enough to be representative of 

the trade, to contain useful features, and to be able to be split into training and 

test datasets. 

In addition, the method of time -tracking and recording is always 

improved on the shop floor, but errors still  exist in historical data for reasons 

such as assigning hours to the wrong division number, failure to keep track of 

time, and failure to  digitalize physical  timesheets properly.  To reduce noise in 

data as much as possible, division records that have zero tonnage, zero budgeted 

hours or zero actual hours are excluded. The figure below is the paper timecard 

currently utilized at the collaborating company.  
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Figure 3-4: Labour tracking card  (courtesy of WSF)  

 

Because of the many services the company provides, jobs in the database 

are categorized into three different types based on the work scope: supply only, 

erection only, and supply and erection. Only jobs that includ e supply work are 

considered because on-site erection is a process almost completely separate from 

off-site shop fabrication. Drafting, accounting, quality, shipping, and other data 

that are irrelevant to the problem being addressed are also excluded. 

As a result, the collected dataset accounts for 298 jobs and 1605 divisions 

in total that were completed by the collaborating company from 2009 to 2013. 

The data from 2009 to 2012 are used as training dataset, and 2013 data are 

reserved for testing the model built.  
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3.3  DATA PREPROCESS ING  

Having selected the data, preprocessing is necessary to get the data into a 

form  suitable for machine learning . It is an important step that involves a lot of 

iterations, analysis, and exploration.  

 The selected data are in a relational database and flat files (*.xsr) , and are 

not ready for application of machine learning algorithms . In the central database, 

the production -related data are scattered over several tables. A general 

illustration of the object relations is il lustrated in  Figure 3-5. The table columns 

in the figure are only partial.  The physical steel materials are not directly 

associated with each division, but rather as parts of pieces and fabrication 

drawings. Divisions are assigned to different shops to be processed according to 

the characteristics of the division and the shopsô capacities. Therefore the shop 

name is included as a nominal input of the model. A detailed description of the 

relational database structure can be found in Section 3.3.1 - Database Structure.  

The database has evolved over the years, leaving misleading parameters 

and design problems in it. Without any well -written development logs or 

comments available, it took a lot of time to find the proper database tables and 

fields to be used for machine learning. A few lessons learnt from  working on  a 

production database are listed below. 

¶ Read-only access is not enough. Ask the database administrator 

for write permission to allow the use of temporary tables, variables, 

and the viewing of stored procedures. 

¶ Ensure nothing has changed to avoid affecting the functionality of 

the production database. 
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¶ Read all the SQL source code in detail, including data table 

structures, constraints, stored procedures, functions, etc. 

¶ Comments in the source code may not be reliable. Always test the 

functions and keep adequate records. 

¶ A same field (or attribute) name used in t wo tables may mean 

different things.  

¶ Do not assume the data type of an attribute solely based on its 

name. For example, ñIDò does not have to be number ; it can also 

be string . 

¶ Starting from a small amount of data makes it easier to verify the 

query or calculation results. 

¶ Always check any constraints added to a table. 

¶ When a foreign key constraint is included in a query, make sure all 

fields covered by the foreign key constraint are considered to avoid 

duplicate query results. 

 

Data were collected via SQL queries and exported to comma-separated 

values (CSV) files. Figure 3-6 is what the raw query result looks like. Records are 

at the material level grouped by the division number and different material types.  
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Figure 3-5: Fabrication information structure in database  

 

 

Figure 3-6: Part of the query result  


















































































































